Tensor-Ring Decomposition with Index-Splitting
نویسندگان
چکیده
منابع مشابه
Tensor Ring Decomposition
Tensor networks have in recent years emerged as the powerful tools for solving the large-scale optimization problems. One of the most popular tensor network is tensor train (TT) decomposition that acts as the building blocks for the complicated tensor networks. However, the TT decomposition highly depends on permutations of tensor dimensions, due to its strictly sequential multilinear products ...
متن کاملTensor Decomposition with Smoothness
Real data tensors are typically high dimensional; however, their intrinsic information is preserved in low-dimensional space, which motivates the use of tensor decompositions such as Tucker decomposition. Frequently, real data tensors smooth in addition to being low dimensional, which implies that adjacent elements are similar or continuously changing. These elements typically appear as spatial...
متن کاملClustering Patients with Tensor Decomposition
In this paper we present a method for the unsupervised clustering of high-dimensional binary data, with a special focus on electronic healthcare records. We present a robust and efficient heuristic to face this problem using tensor decomposition. We present the reasons why this approach is preferable for tasks such as clustering patient records, to more commonly used distance-based methods. We ...
متن کاملTensor Decomposition with Missing Indices
How can we decompose a data tensor if the indices are partially missing? Tensor decomposition is a fundamental tool to analyze the tensor data. Suppose, for example, we have a 3rd-order tensor X where each element Xijk takes 1 if user i posts word j at location k on Twitter. Standard tensor decomposition expects all the indices are observed. However, in some tweets, location k can be missing. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Physical Society of Japan
سال: 2020
ISSN: 0031-9015,1347-4073
DOI: 10.7566/jpsj.89.054003